(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
zero(0) → true
zero(s(x)) → false
id(0) → 0
id(s(x)) → s(id(x))
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(x, y) → if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y) → 0
if_mod(false, b1, b2, x, y) → if2(b1, b2, x, y)
if2(true, b2, x, y) → 0
if2(false, b2, x, y) → if3(b2, x, y)
if3(true, x, y) → mod(minus(x, y), s(y))
if3(false, x, y) → x
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
zero(0') → true
zero(s(x)) → false
id(0') → 0'
id(s(x)) → s(id(x))
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
mod(x, y) → if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y) → 0'
if_mod(false, b1, b2, x, y) → if2(b1, b2, x, y)
if2(true, b2, x, y) → 0'
if2(false, b2, x, y) → if3(b2, x, y)
if3(true, x, y) → mod(minus(x, y), s(y))
if3(false, x, y) → x
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
zero(0') → true
zero(s(x)) → false
id(0') → 0'
id(s(x)) → s(id(x))
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
mod(x, y) → if_mod(zero(x), zero(y), le(y, x), id(x), id(y))
if_mod(true, b1, b2, x, y) → 0'
if_mod(false, b1, b2, x, y) → if2(b1, b2, x, y)
if2(true, b2, x, y) → 0'
if2(false, b2, x, y) → if3(b2, x, y)
if3(true, x, y) → mod(minus(x, y), s(y))
if3(false, x, y) → x
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
id,
minus,
modThey will be analysed ascendingly in the following order:
le < mod
id < mod
minus < mod
(6) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, id, minus, mod
They will be analysed ascendingly in the following order:
le < mod
id < mod
minus < mod
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
id, minus, mod
They will be analysed ascendingly in the following order:
id < mod
minus < mod
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
id(
gen_0':s3_0(
n312_0)) →
gen_0':s3_0(
n312_0), rt ∈ Ω(1 + n312
0)
Induction Base:
id(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
id(gen_0':s3_0(+(n312_0, 1))) →RΩ(1)
s(id(gen_0':s3_0(n312_0))) →IH
s(gen_0':s3_0(c313_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
id(gen_0':s3_0(n312_0)) → gen_0':s3_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, mod
They will be analysed ascendingly in the following order:
minus < mod
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n526_0),
gen_0':s3_0(
n526_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n526
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
minus(gen_0':s3_0(+(n526_0, 1)), gen_0':s3_0(+(n526_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n526_0), gen_0':s3_0(n526_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
id(gen_0':s3_0(n312_0)) → gen_0':s3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s3_0(n526_0), gen_0':s3_0(n526_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
mod
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mod.
(17) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
id(gen_0':s3_0(n312_0)) → gen_0':s3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s3_0(n526_0), gen_0':s3_0(n526_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
id(gen_0':s3_0(n312_0)) → gen_0':s3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s3_0(n526_0), gen_0':s3_0(n526_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
id(gen_0':s3_0(n312_0)) → gen_0':s3_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
zero(
0') →
truezero(
s(
x)) →
falseid(
0') →
0'id(
s(
x)) →
s(
id(
x))
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
mod(
x,
y) →
if_mod(
zero(
x),
zero(
y),
le(
y,
x),
id(
x),
id(
y))
if_mod(
true,
b1,
b2,
x,
y) →
0'if_mod(
false,
b1,
b2,
x,
y) →
if2(
b1,
b2,
x,
y)
if2(
true,
b2,
x,
y) →
0'if2(
false,
b2,
x,
y) →
if3(
b2,
x,
y)
if3(
true,
x,
y) →
mod(
minus(
x,
y),
s(
y))
if3(
false,
x,
y) →
xTypes:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
zero :: 0':s → true:false
id :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
if_mod :: true:false → true:false → true:false → 0':s → 0':s → 0':s
if2 :: true:false → true:false → 0':s → 0':s → 0':s
if3 :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)